Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
- Contract name:
- TeamPassNFT
- Optimization enabled
- true
- Compiler version
- v0.8.24+commit.e11b9ed9
- Optimization runs
- 200
- EVM Version
- cancun
- Verified at
- 2025-09-28T17:59:41.382984Z
Constructor Arguments
0x000000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000c000000000000000000000000000000000000000000000000000000000000001000000000000000000000000007fdf03540091f7fcee1a9b6d564c08d03440a8190000000000000000000000000000000000000000000000000000000000000013467574626f6c427261776c5465616d506173730000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044642545000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001e697066733a2f2f6170692e667574626f6c627261776c2e696f2f6970662f0000
Arg [0] (string) : FutbolBrawlTeamPass
Arg [1] (string) : FBTP
Arg [2] (string) : ipfs://api.futbolbrawl.io/ipf/
Arg [3] (address) : 0x7fdf03540091f7fcee1a9b6d564c08d03440a819
src/TeamPassNFT/TeamPassNFT.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; /* ███████╗██╗ ██╗████████╗██████╗ ██████╗ ██╗ ██████╗ ██████╗ █████╗ ██╗ ██╗██╗ ██╔════╝██║ ██║╚══██╔══╝██╔══██╗██╔═══██╗██║ ██╔══██╗██╔══██╗██╔══██╗██║ ██║██║ █████╗ ██║ ██║ ██║ ██████╔╝██║ ██║██║ ██████╔╝██████╔╝███████║██║ █╗ ██║██║ ██╔══╝ ██║ ██║ ██║ ██╔══██╗██║ ██║██║ ██╔══██╗██╔══██╗██╔══██║██║███╗██║██║ ██║ ╚██████╔╝ ██║ ██████╔╝╚██████╔╝███████╗██████╔╝██║ ██║██║ ██║╚███╔███╔╝███████╗ ╚═╝ ╚═════╝ ╚═╝ ╚═════╝ ╚═════╝ ╚══════╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚══╝╚══╝ ╚══════╝ F U T B O L B R A W L */ import {ERC721} from "@openzeppelin/contracts/token/ERC721/ERC721.sol"; import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol"; import {Strings} from "@openzeppelin/contracts/utils/Strings.sol"; import {ITeamPassNFT} from "./ITeamPassNFT.sol"; /** * @title TeamPassNFT * @dev Generic immutable NFT - Only handles collection * @notice Each NFT has a unique ID that aligns with offchain managed data * @notice Does NOT handle money or business logic - Only NFT creation * @notice Immutable metadata: only baseURI + tokenId * @notice ERC-4906 compatible for standard metadata events * @notice Hierarchical roles: DEFAULT_ADMIN_ROLE > ADMIN_ROLE > MINTER_ROLE */ contract TeamPassNFT is ERC721, AccessControl, ITeamPassNFT { using Strings for uint256; // Hierarchical roles bytes32 public constant ADMIN_ROLE = keccak256("ADMIN_ROLE"); bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE"); // Counter for unique token IDs uint256 private _tokenIdCounter; // Base URI for dynamic metadata (points to your API) string private _baseTokenUri; /** * @dev Contract constructor * @param name NFT name * @param symbol NFT symbol * @param baseUri Base URI that points to your API * @param admin Administrator address */ constructor(string memory name, string memory symbol, string memory baseUri, address admin) ERC721(name, symbol) { require(admin != address(0), "TeamPassNFT: admin cannot be zero address"); _baseTokenUri = baseUri; _tokenIdCounter = 0; // Configure hierarchical roles _grantRole(DEFAULT_ADMIN_ROLE, admin); // Super-admin _grantRole(ADMIN_ROLE, admin); // Operational admin // Establish hierarchy: ADMIN_ROLE is admin of MINTER_ROLE _setRoleAdmin(MINTER_ROLE, ADMIN_ROLE); // IMPORTANT: Operational admin can mint initially // Only addresses with explicitly granted MINTER_ROLE can mint // Higher roles do NOT have automatic minting permissions _grantRole(MINTER_ROLE, admin); } /** * @dev Function to mint a new NFT with unique ID * @param to Recipient address * @return tokenId Unique token ID of the minted token */ function mintTeamPass(address to) external onlyRole(MINTER_ROLE) returns (uint256 tokenId) { require(to != address(0), "TeamPassNFT: mint to zero address"); // Increment counter for unique ID _tokenIdCounter++; tokenId = _tokenIdCounter; _safeMint(to, tokenId); // Emit event with operator for traceability emit TeamPassMinted(to, tokenId, msg.sender); return tokenId; } /** * @dev Function to get token metadata URI * @param tokenId Token ID * @return Token metadata URI (baseURI + tokenId) */ function tokenURI(uint256 tokenId) public view override returns (string memory) { require(_ownerOf(tokenId) != address(0), "TeamPassNFT: token does not exist"); // Always construct URI using base URI + tokenId return string(abi.encodePacked(_baseTokenUri, tokenId.toString())); } /** * @dev Function to update base metadata URI (your API) * @param newBaseUri New base URI */ function setBaseURI(string calldata newBaseUri) external onlyRole(ADMIN_ROLE) { _baseTokenUri = newBaseUri; // Emit standard ERC-4906 event for metadata update // Since we change the base URI, all existing tokens are affected // IDs are sequential from 1, so (1, minted) is valid if (_tokenIdCounter > 0) { emit BatchMetadataUpdate(1, _tokenIdCounter); } } /** * @notice True si `account` posee al menos 1 NFT. */ function hasPass(address account) external view returns (bool) { return balanceOf(account) != 0; } /** * @notice Devuelve TODOS los tokenIds que posee `account`. * @dev Complejidad O(totalMinted). Úsalo desde backend/UI (eth_call). * No lo llames desde otros contratos on-chain. */ function tokensOfOwner(address account) external view returns (uint256[] memory) { uint256 count = balanceOf(account); uint256[] memory tokens = new uint256[](count); if (count == 0) return tokens; uint256 supply = _tokenIdCounter; // total minteados uint256 idx = 0; for (uint256 id = 1; id <= supply; ++id) { if (_ownerOf(id) == account) { tokens[idx++] = id; if (idx == count) break; } } return tokens; } /** * @notice Returns ALL tokenIds owned by `account`. * @dev Complexity O(totalMinted). Use from backend/UI (eth_call). */ function singleTokenOf(address account) external view returns (uint256 tokenId) { require(balanceOf(account) == 1, "TeamPassNFT: zero or multiple tokens"); uint256 supply = _tokenIdCounter; for (uint256 id = 1; id <= supply; ++id) { if (_ownerOf(id) == account) return id; } revert("TeamPassNFT: not found"); } /** * @dev Function to refresh metadata of a specific token (ERC-4906) * @param tokenId Token ID to refresh */ function refreshTokenMetadata(uint256 tokenId) external onlyRole(ADMIN_ROLE) { require(_ownerOf(tokenId) != address(0), "TeamPassNFT: token does not exist"); // Emit ERC-4906 event for specific refresh emit MetadataUpdate(tokenId); } /** * @dev Function to get total minted tokens * @return totalMinted Total number of minted tokens */ function totalSupply() external view returns (uint256 totalMinted) { return _tokenIdCounter; } /** * @dev Function to get next available token ID * @return nextTokenId Next token ID */ function getNextTokenId() external view returns (uint256 nextTokenId) { return _tokenIdCounter + 1; } /** * @dev Function to get base metadata URI * @return baseUri Base metadata URI */ function getBaseURI() external view returns (string memory baseUri) { return _baseTokenUri; } /** * @dev Function to get complete token information * @param tokenId Token ID * @return owner Token owner address * @return tokenUriString Token metadata URI */ function getTokenInfo(uint256 tokenId) external view returns (address owner, string memory tokenUriString) { require(_ownerOf(tokenId) != address(0), "TeamPassNFT: token does not exist"); owner = _ownerOf(tokenId); tokenUriString = tokenURI(tokenId); } /** * @dev Function to get role information * @return adminRole Administrator role * @return minterRole Minter role */ function getRoles() external pure returns (bytes32 adminRole, bytes32 minterRole) { return (ADMIN_ROLE, MINTER_ROLE); } /** * @dev Function to get role hierarchy * @return adminOfMinter Role that administers MINTER_ROLE */ function getRoleAdmin(bytes32 role) public view override(AccessControl, ITeamPassNFT) returns (bytes32) { return super.getRoleAdmin(role); } /** * @dev Function to check interface support * @param interfaceId Interface ID * @return True if interface is supported */ function supportsInterface(bytes4 interfaceId) public view override(ERC721, AccessControl) returns (bool) { return interfaceId == 0x49064906 // ERC-4906 MetadataUpdate || super.supportsInterface(interfaceId); } }
lib/openzeppelin-contracts/contracts/utils/math/SafeCast.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
lib/openzeppelin-contracts/contracts/access/AccessControl.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (access/AccessControl.sol) pragma solidity ^0.8.20; import {IAccessControl} from "./IAccessControl.sol"; import {Context} from "../utils/Context.sol"; import {IERC165, ERC165} from "../utils/introspection/ERC165.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ```solidity * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ```solidity * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules} * to enforce additional security measures for this role. */ abstract contract AccessControl is Context, IAccessControl, ERC165 { struct RoleData { mapping(address account => bool) hasRole; bytes32 adminRole; } mapping(bytes32 role => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Modifier that checks that an account has a specific role. Reverts * with an {AccessControlUnauthorizedAccount} error including the required role. */ modifier onlyRole(bytes32 role) { _checkRole(role); _; } /// @inheritdoc IERC165 function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view virtual returns (bool) { return _roles[role].hasRole[account]; } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()` * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier. */ function _checkRole(bytes32 role) internal view virtual { _checkRole(role, _msgSender()); } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account` * is missing `role`. */ function _checkRole(bytes32 role, address account) internal view virtual { if (!hasRole(role, account)) { revert AccessControlUnauthorizedAccount(account, role); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleGranted} event. */ function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleRevoked} event. */ function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) { _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. * * May emit a {RoleRevoked} event. */ function renounceRole(bytes32 role, address callerConfirmation) public virtual { if (callerConfirmation != _msgSender()) { revert AccessControlBadConfirmation(); } _revokeRole(role, callerConfirmation); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { bytes32 previousAdminRole = getRoleAdmin(role); _roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } /** * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted. * * Internal function without access restriction. * * May emit a {RoleGranted} event. */ function _grantRole(bytes32 role, address account) internal virtual returns (bool) { if (!hasRole(role, account)) { _roles[role].hasRole[account] = true; emit RoleGranted(role, account, _msgSender()); return true; } else { return false; } } /** * @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked. * * Internal function without access restriction. * * May emit a {RoleRevoked} event. */ function _revokeRole(bytes32 role, address account) internal virtual returns (bool) { if (hasRole(role, account)) { _roles[role].hasRole[account] = false; emit RoleRevoked(role, account, _msgSender()); return true; } else { return false; } } }
lib/openzeppelin-contracts/contracts/access/IAccessControl.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (access/IAccessControl.sol) pragma solidity >=0.8.4; /** * @dev External interface of AccessControl declared to support ERC-165 detection. */ interface IAccessControl { /** * @dev The `account` is missing a role. */ error AccessControlUnauthorizedAccount(address account, bytes32 neededRole); /** * @dev The caller of a function is not the expected one. * * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}. */ error AccessControlBadConfirmation(); /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted to signal this. */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role). * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external; /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external; /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. */ function renounceRole(bytes32 role, address callerConfirmation) external; }
lib/openzeppelin-contracts/contracts/interfaces/draft-IERC6093.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC6093.sol) pragma solidity >=0.8.4; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
lib/openzeppelin-contracts/contracts/token/ERC721/ERC721.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/ERC721.sol) pragma solidity ^0.8.20; import {IERC721} from "./IERC721.sol"; import {IERC721Metadata} from "./extensions/IERC721Metadata.sol"; import {ERC721Utils} from "./utils/ERC721Utils.sol"; import {Context} from "../../utils/Context.sol"; import {Strings} from "../../utils/Strings.sol"; import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol"; import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including * the Metadata extension, but not including the Enumerable extension, which is available separately as * {ERC721Enumerable}. */ abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors { using Strings for uint256; // Token name string private _name; // Token symbol string private _symbol; mapping(uint256 tokenId => address) private _owners; mapping(address owner => uint256) private _balances; mapping(uint256 tokenId => address) private _tokenApprovals; mapping(address owner => mapping(address operator => bool)) private _operatorApprovals; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /// @inheritdoc IERC165 function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /// @inheritdoc IERC721 function balanceOf(address owner) public view virtual returns (uint256) { if (owner == address(0)) { revert ERC721InvalidOwner(address(0)); } return _balances[owner]; } /// @inheritdoc IERC721 function ownerOf(uint256 tokenId) public view virtual returns (address) { return _requireOwned(tokenId); } /// @inheritdoc IERC721Metadata function name() public view virtual returns (string memory) { return _name; } /// @inheritdoc IERC721Metadata function symbol() public view virtual returns (string memory) { return _symbol; } /// @inheritdoc IERC721Metadata function tokenURI(uint256 tokenId) public view virtual returns (string memory) { _requireOwned(tokenId); string memory baseURI = _baseURI(); return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : ""; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ""; } /// @inheritdoc IERC721 function approve(address to, uint256 tokenId) public virtual { _approve(to, tokenId, _msgSender()); } /// @inheritdoc IERC721 function getApproved(uint256 tokenId) public view virtual returns (address) { _requireOwned(tokenId); return _getApproved(tokenId); } /// @inheritdoc IERC721 function setApprovalForAll(address operator, bool approved) public virtual { _setApprovalForAll(_msgSender(), operator, approved); } /// @inheritdoc IERC721 function isApprovedForAll(address owner, address operator) public view virtual returns (bool) { return _operatorApprovals[owner][operator]; } /// @inheritdoc IERC721 function transferFrom(address from, address to, uint256 tokenId) public virtual { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here. address previousOwner = _update(to, tokenId, _msgSender()); if (previousOwner != from) { revert ERC721IncorrectOwner(from, tokenId, previousOwner); } } /// @inheritdoc IERC721 function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /// @inheritdoc IERC721 function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual { transferFrom(from, to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data); } /** * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist * * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the * core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`. */ function _ownerOf(uint256 tokenId) internal view virtual returns (address) { return _owners[tokenId]; } /** * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted. */ function _getApproved(uint256 tokenId) internal view virtual returns (address) { return _tokenApprovals[tokenId]; } /** * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in * particular (ignoring whether it is owned by `owner`). * * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this * assumption. */ function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) { return spender != address(0) && (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender); } /** * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner. * Reverts if: * - `spender` does not have approval from `owner` for `tokenId`. * - `spender` does not have approval to manage all of `owner`'s assets. * * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this * assumption. */ function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual { if (!_isAuthorized(owner, spender, tokenId)) { if (owner == address(0)) { revert ERC721NonexistentToken(tokenId); } else { revert ERC721InsufficientApproval(spender, tokenId); } } } /** * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override. * * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that * a uint256 would ever overflow from increments when these increments are bounded to uint128 values. * * WARNING: Increasing an account's balance using this function tends to be paired with an override of the * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership * remain consistent with one another. */ function _increaseBalance(address account, uint128 value) internal virtual { unchecked { _balances[account] += value; } } /** * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update. * * The `auth` argument is optional. If the value passed is non 0, then this function will check that * `auth` is either the owner of the token, or approved to operate on the token (by the owner). * * Emits a {Transfer} event. * * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}. */ function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) { address from = _ownerOf(tokenId); // Perform (optional) operator check if (auth != address(0)) { _checkAuthorized(from, auth, tokenId); } // Execute the update if (from != address(0)) { // Clear approval. No need to re-authorize or emit the Approval event _approve(address(0), tokenId, address(0), false); unchecked { _balances[from] -= 1; } } if (to != address(0)) { unchecked { _balances[to] += 1; } } _owners[tokenId] = to; emit Transfer(from, to, tokenId); return from; } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } address previousOwner = _update(to, tokenId, address(0)); if (previousOwner != address(0)) { revert ERC721InvalidSender(address(0)); } } /** * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance. * * Requirements: * * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual { _mint(to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * This is an internal function that does not check if the sender is authorized to operate on the token. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal { address previousOwner = _update(address(0), tokenId, address(0)); if (previousOwner == address(0)) { revert ERC721NonexistentToken(tokenId); } } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer(address from, address to, uint256 tokenId) internal { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } address previousOwner = _update(to, tokenId, address(0)); if (previousOwner == address(0)) { revert ERC721NonexistentToken(tokenId); } else if (previousOwner != from) { revert ERC721IncorrectOwner(from, tokenId, previousOwner); } } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients * are aware of the ERC-721 standard to prevent tokens from being forever locked. * * `data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is like {safeTransferFrom} in the sense that it invokes * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `tokenId` token must exist and be owned by `from`. * - `to` cannot be the zero address. * - `from` cannot be the zero address. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer(address from, address to, uint256 tokenId) internal { _safeTransfer(from, to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual { _transfer(from, to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data); } /** * @dev Approve `to` to operate on `tokenId` * * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is * either the owner of the token, or approved to operate on all tokens held by this owner. * * Emits an {Approval} event. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address to, uint256 tokenId, address auth) internal { _approve(to, tokenId, auth, true); } /** * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not * emitted in the context of transfers. */ function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual { // Avoid reading the owner unless necessary if (emitEvent || auth != address(0)) { address owner = _requireOwned(tokenId); // We do not use _isAuthorized because single-token approvals should not be able to call approve if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) { revert ERC721InvalidApprover(auth); } if (emitEvent) { emit Approval(owner, to, tokenId); } } _tokenApprovals[tokenId] = to; } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Requirements: * - operator can't be the address zero. * * Emits an {ApprovalForAll} event. */ function _setApprovalForAll(address owner, address operator, bool approved) internal virtual { if (operator == address(0)) { revert ERC721InvalidOperator(operator); } _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned). * Returns the owner. * * Overrides to ownership logic should be done to {_ownerOf}. */ function _requireOwned(uint256 tokenId) internal view returns (address) { address owner = _ownerOf(tokenId); if (owner == address(0)) { revert ERC721NonexistentToken(tokenId); } return owner; } }
lib/openzeppelin-contracts/contracts/token/ERC721/IERC721.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/IERC721.sol) pragma solidity >=0.6.2; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC-721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC-721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
lib/openzeppelin-contracts/contracts/token/ERC721/IERC721Receiver.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/IERC721Receiver.sol) pragma solidity >=0.5.0; /** * @title ERC-721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC-721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be * reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
lib/openzeppelin-contracts/contracts/token/ERC721/extensions/IERC721Metadata.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity >=0.6.2; import {IERC721} from "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
lib/openzeppelin-contracts/contracts/token/ERC721/utils/ERC721Utils.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/utils/ERC721Utils.sol) pragma solidity ^0.8.20; import {IERC721Receiver} from "../IERC721Receiver.sol"; import {IERC721Errors} from "../../../interfaces/draft-IERC6093.sol"; /** * @dev Library that provide common ERC-721 utility functions. * * See https://eips.ethereum.org/EIPS/eip-721[ERC-721]. * * _Available since v5.1._ */ library ERC721Utils { /** * @dev Performs an acceptance check for the provided `operator` by calling {IERC721Receiver-onERC721Received} * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`). * * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA). * Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value to accept * the transfer. */ function checkOnERC721Received( address operator, address from, address to, uint256 tokenId, bytes memory data ) internal { if (to.code.length > 0) { try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) { if (retval != IERC721Receiver.onERC721Received.selector) { // Token rejected revert IERC721Errors.ERC721InvalidReceiver(to); } } catch (bytes memory reason) { if (reason.length == 0) { // non-IERC721Receiver implementer revert IERC721Errors.ERC721InvalidReceiver(to); } else { assembly ("memory-safe") { revert(add(reason, 0x20), mload(reason)) } } } } } }
lib/openzeppelin-contracts/contracts/utils/Context.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
lib/openzeppelin-contracts/contracts/utils/Panic.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
lib/openzeppelin-contracts/contracts/utils/Strings.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SafeCast} from "./math/SafeCast.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { using SafeCast for *; bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; uint256 private constant SPECIAL_CHARS_LOOKUP = (1 << 0x08) | // backspace (1 << 0x09) | // tab (1 << 0x0a) | // newline (1 << 0x0c) | // form feed (1 << 0x0d) | // carriage return (1 << 0x22) | // double quote (1 << 0x5c); // backslash /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev The string being parsed contains characters that are not in scope of the given base. */ error StringsInvalidChar(); /** * @dev The string being parsed is not a properly formatted address. */ error StringsInvalidAddressFormat(); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(add(buffer, 0x20), length) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } /** * @dev Parse a decimal string and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input) internal pure returns (uint256) { return parseUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); uint256 result = 0; for (uint256 i = begin; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 9) return (false, 0); result *= 10; result += chr; } return (true, result); } /** * @dev Parse a decimal string and returns the value as a `int256`. * * Requirements: * - The string must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input) internal pure returns (int256) { return parseInt(input, 0, bytes(input).length); } /** * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) { (bool success, int256 value) = tryParseInt(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if * the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt(string memory input) internal pure returns (bool success, int256 value) { return _tryParseIntUncheckedBounds(input, 0, bytes(input).length); } uint256 private constant ABS_MIN_INT256 = 2 ** 255; /** * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character or if the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, int256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseIntUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseIntUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, int256 value) { bytes memory buffer = bytes(input); // Check presence of a negative sign. bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty bool positiveSign = sign == bytes1("+"); bool negativeSign = sign == bytes1("-"); uint256 offset = (positiveSign || negativeSign).toUint(); (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end); if (absSuccess && absValue < ABS_MIN_INT256) { return (true, negativeSign ? -int256(absValue) : int256(absValue)); } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) { return (true, type(int256).min); } else return (false, 0); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input) internal pure returns (uint256) { return parseHexUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseHexUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an * invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseHexUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseHexUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); // skip 0x prefix if present bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 offset = hasPrefix.toUint() * 2; uint256 result = 0; for (uint256 i = begin + offset; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 15) return (false, 0); result *= 16; unchecked { // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check). // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked. result += chr; } } return (true, result); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input) internal pure returns (address) { return parseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) { (bool success, address value) = tryParseAddress(input, begin, end); if (!success) revert StringsInvalidAddressFormat(); return value; } /** * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly * formatted address. See {parseAddress-string} requirements. */ function tryParseAddress(string memory input) internal pure returns (bool success, address value) { return tryParseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly * formatted address. See {parseAddress-string-uint256-uint256} requirements. */ function tryParseAddress( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, address value) { if (end > bytes(input).length || begin > end) return (false, address(0)); bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 expectedLength = 40 + hasPrefix.toUint() * 2; // check that input is the correct length if (end - begin == expectedLength) { // length guarantees that this does not overflow, and value is at most type(uint160).max (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end); return (s, address(uint160(v))); } else { return (false, address(0)); } } function _tryParseChr(bytes1 chr) private pure returns (uint8) { uint8 value = uint8(chr); // Try to parse `chr`: // - Case 1: [0-9] // - Case 2: [a-f] // - Case 3: [A-F] // - otherwise not supported unchecked { if (value > 47 && value < 58) value -= 48; else if (value > 96 && value < 103) value -= 87; else if (value > 64 && value < 71) value -= 55; else return type(uint8).max; } return value; } /** * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata. * * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped. * * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode * characters that are not in this range, but other tooling may provide different results. */ function escapeJSON(string memory input) internal pure returns (string memory) { bytes memory buffer = bytes(input); bytes memory output = new bytes(2 * buffer.length); // worst case scenario uint256 outputLength = 0; for (uint256 i; i < buffer.length; ++i) { bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i)); if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) { output[outputLength++] = "\\"; if (char == 0x08) output[outputLength++] = "b"; else if (char == 0x09) output[outputLength++] = "t"; else if (char == 0x0a) output[outputLength++] = "n"; else if (char == 0x0c) output[outputLength++] = "f"; else if (char == 0x0d) output[outputLength++] = "r"; else if (char == 0x5c) output[outputLength++] = "\\"; else if (char == 0x22) { // solhint-disable-next-line quotes output[outputLength++] = '"'; } } else { output[outputLength++] = char; } } // write the actual length and deallocate unused memory assembly ("memory-safe") { mstore(output, outputLength) mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63))))) } return string(output); } /** * @dev Reads a bytes32 from a bytes array without bounds checking. * * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the * assembly block as such would prevent some optimizations. */ function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) { // This is not memory safe in the general case, but all calls to this private function are within bounds. assembly ("memory-safe") { value := mload(add(add(buffer, 0x20), offset)) } } }
lib/openzeppelin-contracts/contracts/utils/introspection/ERC165.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165 is IERC165 { /// @inheritdoc IERC165 function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
lib/openzeppelin-contracts/contracts/utils/introspection/IERC165.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol) pragma solidity >=0.4.16; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
lib/openzeppelin-contracts/contracts/utils/math/Math.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Return the 512-bit addition of two uint256. * * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low. */ function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) { assembly ("memory-safe") { low := add(a, b) high := lt(low, a) } } /** * @dev Return the 512-bit multiplication of two uint256. * * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low. */ function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) { // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = high * 2²⁵⁶ + low. assembly ("memory-safe") { let mm := mulmod(a, b, not(0)) low := mul(a, b) high := sub(sub(mm, low), lt(mm, low)) } } /** * @dev Returns the addition of two unsigned integers, with a success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; success = c >= a; result = c * SafeCast.toUint(success); } } /** * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a - b; success = c <= a; result = c * SafeCast.toUint(success); } } /** * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a * b; assembly ("memory-safe") { // Only true when the multiplication doesn't overflow // (c / a == b) || (a == 0) success := or(eq(div(c, a), b), iszero(a)) } // equivalent to: success ? c : 0 result = c * SafeCast.toUint(success); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { success = b > 0; assembly ("memory-safe") { // The `DIV` opcode returns zero when the denominator is 0. result := div(a, b) } } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { success = b > 0; assembly ("memory-safe") { // The `MOD` opcode returns zero when the denominator is 0. result := mod(a, b) } } } /** * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing. */ function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) { (bool success, uint256 result) = tryAdd(a, b); return ternary(success, result, type(uint256).max); } /** * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing. */ function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) { (, uint256 result) = trySub(a, b); return result; } /** * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing. */ function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) { (bool success, uint256 result) = tryMul(a, b); return ternary(success, result, type(uint256).max); } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { (uint256 high, uint256 low) = mul512(x, y); // Handle non-overflow cases, 256 by 256 division. if (high == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return low / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= high) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [high low]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. high := sub(high, gt(remainder, low)) low := sub(low, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly ("memory-safe") { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [high low] by twos. low := div(low, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from high into low. low |= high * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high // is no longer required. result = low * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256. */ function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) { unchecked { (uint256 high, uint256 low) = mul512(x, y); if (high >= 1 << n) { Panic.panic(Panic.UNDER_OVERFLOW); } return (high << (256 - n)) | (low >> n); } } /** * @dev Calculates x * y >> n with full precision, following the selected rounding direction. */ function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) { return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 x) internal pure returns (uint256 r) { // If value has upper 128 bits set, log2 result is at least 128 r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7; // If upper 64 bits of 128-bit half set, add 64 to result r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6; // If upper 32 bits of 64-bit half set, add 32 to result r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5; // If upper 16 bits of 32-bit half set, add 16 to result r |= SafeCast.toUint((x >> r) > 0xffff) << 4; // If upper 8 bits of 16-bit half set, add 8 to result r |= SafeCast.toUint((x >> r) > 0xff) << 3; // If upper 4 bits of 8-bit half set, add 4 to result r |= SafeCast.toUint((x >> r) > 0xf) << 2; // Shifts value right by the current result and use it as an index into this lookup table: // // | x (4 bits) | index | table[index] = MSB position | // |------------|---------|-----------------------------| // | 0000 | 0 | table[0] = 0 | // | 0001 | 1 | table[1] = 0 | // | 0010 | 2 | table[2] = 1 | // | 0011 | 3 | table[3] = 1 | // | 0100 | 4 | table[4] = 2 | // | 0101 | 5 | table[5] = 2 | // | 0110 | 6 | table[6] = 2 | // | 0111 | 7 | table[7] = 2 | // | 1000 | 8 | table[8] = 3 | // | 1001 | 9 | table[9] = 3 | // | 1010 | 10 | table[10] = 3 | // | 1011 | 11 | table[11] = 3 | // | 1100 | 12 | table[12] = 3 | // | 1101 | 13 | table[13] = 3 | // | 1110 | 14 | table[14] = 3 | // | 1111 | 15 | table[15] = 3 | // // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes. assembly ("memory-safe") { r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000)) } } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 x) internal pure returns (uint256 r) { // If value has upper 128 bits set, log2 result is at least 128 r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7; // If upper 64 bits of 128-bit half set, add 64 to result r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6; // If upper 32 bits of 64-bit half set, add 32 to result r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5; // If upper 16 bits of 32-bit half set, add 16 to result r |= SafeCast.toUint((x >> r) > 0xffff) << 4; // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8 return (r >> 3) | SafeCast.toUint((x >> r) > 0xff); } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
lib/openzeppelin-contracts/contracts/utils/math/SignedMath.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
src/TeamPassNFT/ITeamPassNFT.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; /** * @title ITeamPassNFT * @dev Interface for generic immutable NFT - Only handles collection * @notice Each NFT has a unique ID that aligns with offchain managed data * @notice Does NOT handle money or business logic - Only NFT creation * @notice Immutable metadata: only baseURI + tokenId * @notice ERC-4906 compatible for standard metadata events * @notice Hierarchical roles: DEFAULT_ADMIN_ROLE > ADMIN_ROLE > MINTER_ROLE */ interface ITeamPassNFT { // Hierarchical roles function ADMIN_ROLE() external view returns (bytes32); function MINTER_ROLE() external view returns (bytes32); /** * @dev Event emitted when a new NFT is minted * @param to Recipient address * @param tokenId Unique token ID of the minted token * @param operator Minter address (for traceability) */ event TeamPassMinted(address indexed to, uint256 indexed tokenId, address operator); /** * @dev Standard ERC-4906 event for single token metadata update * @param _tokenId ID of the affected token */ event MetadataUpdate(uint256 _tokenId); /** * @dev Standard ERC-4906 event for multiple tokens metadata update * @param _fromTokenId ID of the first affected token * @param _toTokenId ID of the last affected token */ event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId); /** * @dev Function to mint a new NFT with unique ID * @param to Recipient address * @return tokenId Unique token ID of the minted token */ function mintTeamPass(address to) external returns (uint256 tokenId); /** * @dev Function to update base metadata URI (your API) * @param newBaseUri New base URI */ function setBaseURI(string calldata newBaseUri) external; /** * @dev Function to refresh metadata of a specific token (ERC-4906) * @param tokenId Token ID to refresh */ function refreshTokenMetadata(uint256 tokenId) external; /** * @dev Function to get total minted tokens * @return totalMinted Total number of minted tokens */ function totalSupply() external view returns (uint256 totalMinted); /** * @dev Function to get next available token ID * @return nextTokenId Next token ID */ function getNextTokenId() external view returns (uint256 nextTokenId); /** * @dev Function to get base metadata URI * @return baseUri Base metadata URI */ function getBaseURI() external view returns (string memory baseUri); /** * @dev Function to get complete token information * @param tokenId Token ID * @return owner Token owner address * @return tokenUriString Token metadata URI */ function getTokenInfo(uint256 tokenId) external view returns (address owner, string memory tokenUriString); /** * @dev Function to get role information * @return adminRole Administrator role * @return minterRole Minter role */ function getRoles() external view returns (bytes32 adminRole, bytes32 minterRole); /** * @dev Function to get role hierarchy * @param role Role to query * @return adminRole Role that administers the queried role */ function getRoleAdmin(bytes32 role) external view returns (bytes32 adminRole); function tokensOfOwner(address account) external view returns (uint256[] memory); function singleTokenOf(address account) external view returns (uint256 tokenId); }
Compiler Settings
{"viaIR":false,"remappings":["@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/","@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/","erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/","forge-std/=lib/forge-std/src/","halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/","openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/","openzeppelin-contracts/=lib/openzeppelin-contracts/"],"outputSelection":{"*":{"*":["*"],"":["*"]}},"optimizer":{"runs":200,"enabled":true},"metadata":{"useLiteralContent":false,"bytecodeHash":"ipfs","appendCBOR":true},"libraries":{},"evmVersion":"cancun"}
Contract ABI
[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"string","name":"name","internalType":"string"},{"type":"string","name":"symbol","internalType":"string"},{"type":"string","name":"baseUri","internalType":"string"},{"type":"address","name":"admin","internalType":"address"}]},{"type":"error","name":"AccessControlBadConfirmation","inputs":[]},{"type":"error","name":"AccessControlUnauthorizedAccount","inputs":[{"type":"address","name":"account","internalType":"address"},{"type":"bytes32","name":"neededRole","internalType":"bytes32"}]},{"type":"error","name":"ERC721IncorrectOwner","inputs":[{"type":"address","name":"sender","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"},{"type":"address","name":"owner","internalType":"address"}]},{"type":"error","name":"ERC721InsufficientApproval","inputs":[{"type":"address","name":"operator","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"error","name":"ERC721InvalidApprover","inputs":[{"type":"address","name":"approver","internalType":"address"}]},{"type":"error","name":"ERC721InvalidOperator","inputs":[{"type":"address","name":"operator","internalType":"address"}]},{"type":"error","name":"ERC721InvalidOwner","inputs":[{"type":"address","name":"owner","internalType":"address"}]},{"type":"error","name":"ERC721InvalidReceiver","inputs":[{"type":"address","name":"receiver","internalType":"address"}]},{"type":"error","name":"ERC721InvalidSender","inputs":[{"type":"address","name":"sender","internalType":"address"}]},{"type":"error","name":"ERC721NonexistentToken","inputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"event","name":"Approval","inputs":[{"type":"address","name":"owner","internalType":"address","indexed":true},{"type":"address","name":"approved","internalType":"address","indexed":true},{"type":"uint256","name":"tokenId","internalType":"uint256","indexed":true}],"anonymous":false},{"type":"event","name":"ApprovalForAll","inputs":[{"type":"address","name":"owner","internalType":"address","indexed":true},{"type":"address","name":"operator","internalType":"address","indexed":true},{"type":"bool","name":"approved","internalType":"bool","indexed":false}],"anonymous":false},{"type":"event","name":"BatchMetadataUpdate","inputs":[{"type":"uint256","name":"_fromTokenId","internalType":"uint256","indexed":false},{"type":"uint256","name":"_toTokenId","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"event","name":"MetadataUpdate","inputs":[{"type":"uint256","name":"_tokenId","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"event","name":"RoleAdminChanged","inputs":[{"type":"bytes32","name":"role","internalType":"bytes32","indexed":true},{"type":"bytes32","name":"previousAdminRole","internalType":"bytes32","indexed":true},{"type":"bytes32","name":"newAdminRole","internalType":"bytes32","indexed":true}],"anonymous":false},{"type":"event","name":"RoleGranted","inputs":[{"type":"bytes32","name":"role","internalType":"bytes32","indexed":true},{"type":"address","name":"account","internalType":"address","indexed":true},{"type":"address","name":"sender","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"RoleRevoked","inputs":[{"type":"bytes32","name":"role","internalType":"bytes32","indexed":true},{"type":"address","name":"account","internalType":"address","indexed":true},{"type":"address","name":"sender","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"TeamPassMinted","inputs":[{"type":"address","name":"to","internalType":"address","indexed":true},{"type":"uint256","name":"tokenId","internalType":"uint256","indexed":true},{"type":"address","name":"operator","internalType":"address","indexed":false}],"anonymous":false},{"type":"event","name":"Transfer","inputs":[{"type":"address","name":"from","internalType":"address","indexed":true},{"type":"address","name":"to","internalType":"address","indexed":true},{"type":"uint256","name":"tokenId","internalType":"uint256","indexed":true}],"anonymous":false},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes32","name":"","internalType":"bytes32"}],"name":"ADMIN_ROLE","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes32","name":"","internalType":"bytes32"}],"name":"DEFAULT_ADMIN_ROLE","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes32","name":"","internalType":"bytes32"}],"name":"MINTER_ROLE","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"approve","inputs":[{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"","internalType":"uint256"}],"name":"balanceOf","inputs":[{"type":"address","name":"owner","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"getApproved","inputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"string","name":"baseUri","internalType":"string"}],"name":"getBaseURI","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"nextTokenId","internalType":"uint256"}],"name":"getNextTokenId","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes32","name":"","internalType":"bytes32"}],"name":"getRoleAdmin","inputs":[{"type":"bytes32","name":"role","internalType":"bytes32"}]},{"type":"function","stateMutability":"pure","outputs":[{"type":"bytes32","name":"adminRole","internalType":"bytes32"},{"type":"bytes32","name":"minterRole","internalType":"bytes32"}],"name":"getRoles","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"owner","internalType":"address"},{"type":"string","name":"tokenUriString","internalType":"string"}],"name":"getTokenInfo","inputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"grantRole","inputs":[{"type":"bytes32","name":"role","internalType":"bytes32"},{"type":"address","name":"account","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"hasPass","inputs":[{"type":"address","name":"account","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"hasRole","inputs":[{"type":"bytes32","name":"role","internalType":"bytes32"},{"type":"address","name":"account","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"isApprovedForAll","inputs":[{"type":"address","name":"owner","internalType":"address"},{"type":"address","name":"operator","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}],"name":"mintTeamPass","inputs":[{"type":"address","name":"to","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"string","name":"","internalType":"string"}],"name":"name","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"ownerOf","inputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"refreshTokenMetadata","inputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"renounceRole","inputs":[{"type":"bytes32","name":"role","internalType":"bytes32"},{"type":"address","name":"callerConfirmation","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"revokeRole","inputs":[{"type":"bytes32","name":"role","internalType":"bytes32"},{"type":"address","name":"account","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"safeTransferFrom","inputs":[{"type":"address","name":"from","internalType":"address"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"safeTransferFrom","inputs":[{"type":"address","name":"from","internalType":"address"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"setApprovalForAll","inputs":[{"type":"address","name":"operator","internalType":"address"},{"type":"bool","name":"approved","internalType":"bool"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"setBaseURI","inputs":[{"type":"string","name":"newBaseUri","internalType":"string"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}],"name":"singleTokenOf","inputs":[{"type":"address","name":"account","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"supportsInterface","inputs":[{"type":"bytes4","name":"interfaceId","internalType":"bytes4"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"string","name":"","internalType":"string"}],"name":"symbol","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"string","name":"","internalType":"string"}],"name":"tokenURI","inputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256[]","name":"","internalType":"uint256[]"}],"name":"tokensOfOwner","inputs":[{"type":"address","name":"account","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"totalMinted","internalType":"uint256"}],"name":"totalSupply","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"transferFrom","inputs":[{"type":"address","name":"from","internalType":"address"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"}]}]
Contract Creation Code
0x608060405234801562000010575f80fd5b50604051620020b4380380620020b4833981016040819052620000339162000326565b83835f6200004283826200045c565b5060016200005182826200045c565b5050506001600160a01b038116620000c15760405162461bcd60e51b815260206004820152602960248201527f5465616d506173734e46543a2061646d696e2063616e6e6f74206265207a65726044820152686f206164647265737360b81b606482015260840160405180910390fd5b6008620000cf83826200045c565b505f6007819055620000e290826200014b565b50620000fd5f8051602062002094833981519152826200014b565b50620001265f80516020620020748339815191525f8051602062002094833981519152620001fb565b620001405f8051602062002074833981519152826200014b565b505050505062000528565b5f8281526006602090815260408083206001600160a01b038516845290915281205460ff16620001f2575f8381526006602090815260408083206001600160a01b03861684529091529020805460ff19166001179055620001a93390565b6001600160a01b0316826001600160a01b0316847f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a4506001620001f5565b505f5b92915050565b5f62000207836200024e565b5f84815260066020526040808220600101859055519192508391839186917fbd79b86ffe0ab8e8776151514217cd7cacd52c909f66475c3af44e129f0b00ff9190a4505050565b5f81815260066020526040812060010154620001f5565b634e487b7160e01b5f52604160045260245ffd5b5f82601f83011262000289575f80fd5b81516001600160401b0380821115620002a657620002a662000265565b604051601f8301601f19908116603f01168101908282118183101715620002d157620002d162000265565b8160405283815260209250866020858801011115620002ee575f80fd5b5f91505b83821015620003115785820183015181830184015290820190620002f2565b5f602085830101528094505050505092915050565b5f805f80608085870312156200033a575f80fd5b84516001600160401b038082111562000351575f80fd5b6200035f8883890162000279565b9550602087015191508082111562000375575f80fd5b620003838883890162000279565b9450604087015191508082111562000399575f80fd5b50620003a88782880162000279565b606087015190935090506001600160a01b0381168114620003c7575f80fd5b939692955090935050565b600181811c90821680620003e757607f821691505b6020821081036200040657634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156200045757805f5260205f20601f840160051c81016020851015620004335750805b601f840160051c820191505b8181101562000454575f81556001016200043f565b50505b505050565b81516001600160401b0381111562000478576200047862000265565b6200049081620004898454620003d2565b846200040c565b602080601f831160018114620004c6575f8415620004ae5750858301515b5f19600386901b1c1916600185901b17855562000520565b5f85815260208120601f198616915b82811015620004f657888601518255948401946001909101908401620004d5565b50858210156200051457878501515f19600388901b60f8161c191681555b505060018460011b0185555b505050505050565b611b3e80620005365f395ff3fe608060405234801561000f575f80fd5b50600436106101e7575f3560e01c806375b238fc11610109578063b854a66a1161009e578063d53913931161006e578063d53913931461044f578063d547741f14610476578063d690e16314610489578063e985e9c51461049c575f80fd5b8063b854a66a1461040e578063b88d4fde14610421578063c87b56dd14610434578063caa0f92a14610447575f80fd5b8063937cde20116100d9578063937cde20146103d957806395d89b41146103ec578063a217fddf146103f4578063a22cb465146103fb575f80fd5b806375b238fc146103715780638462151c146103855780638c7a63ae146103a557806391d14854146103c6575f80fd5b80632f2ff15d1161017f5780636352211e1161014f5780636352211e1461030357806370a08231146103165780637106139814610329578063714c539814610369575f80fd5b80632f2ff15d146102b757806336568abe146102ca57806342842e0e146102dd57806355f804b3146102f0575f80fd5b80631428b294116101ba5780631428b2941461026857806318160ddd1461028957806323b872dd14610291578063248a9ca3146102a4575f80fd5b806301ffc9a7146101eb57806306fdde0314610213578063081812fc14610228578063095ea7b314610253575b5f80fd5b6101fe6101f93660046114d7565b6104af565b60405190151581526020015b60405180910390f35b61021b6104d9565b60405161020a9190611546565b61023b610236366004611558565b610568565b6040516001600160a01b03909116815260200161020a565b61026661026136600461158a565b61058f565b005b61027b6102763660046115b2565b61059e565b60405190815260200161020a565b60075461027b565b61026661029f3660046115cb565b61068f565b61027b6102b2366004611558565b610718565b6102666102c5366004611604565b61072e565b6102666102d8366004611604565b61074a565b6102666102eb3660046115cb565b610782565b6102666102fe36600461162e565b61079c565b61023b610311366004611558565b61080c565b61027b6103243660046115b2565b610816565b604080515f80516020611ae983398151915281527f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a660208201520161020a565b61021b61085b565b61027b5f80516020611ae983398151915281565b6103986103933660046115b2565b61086a565b60405161020a919061169a565b6103b86103b3366004611558565b610947565b60405161020a9291906116dd565b6101fe6103d4366004611604565b610995565b6101fe6103e73660046115b2565b6109bf565b61021b6109d1565b61027b5f81565b610266610409366004611700565b6109e0565b61027b61041c3660046115b2565b6109eb565b61026661042f36600461174d565b610ae0565b61021b610442366004611558565b610af8565b61027b610b5c565b61027b7f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a681565b610266610484366004611604565b610b71565b610266610497366004611558565b610b8d565b6101fe6104aa366004611822565b610c0b565b5f632483248360e11b6001600160e01b0319831614806104d357506104d382610c38565b92915050565b60605f80546104e79061184a565b80601f01602080910402602001604051908101604052809291908181526020018280546105139061184a565b801561055e5780601f106105355761010080835404028352916020019161055e565b820191905f5260205f20905b81548152906001019060200180831161054157829003601f168201915b5050505050905090565b5f61057282610c5c565b505f828152600460205260409020546001600160a01b03166104d3565b61059a828233610c93565b5050565b5f6105a882610816565b6001146106085760405162461bcd60e51b8152602060048201526024808201527f5465616d506173734e46543a207a65726f206f72206d756c7469706c6520746f6044820152636b656e7360e01b60648201526084015b60405180910390fd5b60075460015b81811161064d57836001600160a01b031661062882610ca0565b6001600160a01b03160361063d579392505050565b61064681611890565b905061060e565b5060405162461bcd60e51b81526020600482015260166024820152751519585b54185cdcd391950e881b9bdd08199bdd5b9960521b60448201526064016105ff565b6001600160a01b0382166106b857604051633250574960e11b81525f60048201526024016105ff565b5f6106c4838333610cba565b9050836001600160a01b0316816001600160a01b031614610712576040516364283d7b60e01b81526001600160a01b03808616600483015260248201849052821660448201526064016105ff565b50505050565b5f818152600660205260408120600101546104d3565b61073782610718565b61074081610da7565b6107128383610db4565b6001600160a01b03811633146107735760405163334bd91960e11b815260040160405180910390fd5b61077d8282610e45565b505050565b61077d83838360405180602001604052805f815250610ae0565b5f80516020611ae98339815191526107b381610da7565b60086107c08385836118ec565b506007541561077d57600754604080516001815260208101929092527f6bd5c950a8d8df17f772f5af37cb3655737899cbf903264b9795592da439661c910160405180910390a1505050565b5f6104d382610c5c565b5f6001600160a01b038216610840576040516322718ad960e21b81525f60048201526024016105ff565b506001600160a01b03165f9081526003602052604090205490565b6060600880546104e79061184a565b60605f61087683610816565b90505f8167ffffffffffffffff81111561089257610892611739565b6040519080825280602002602001820160405280156108bb578160200160208202803683370190505b509050815f036108cc579392505050565b6007545f60015b82811161093c57866001600160a01b03166108ed82610ca0565b6001600160a01b03160361092c5780848361090781611890565b945081518110610919576109196119a6565b602090810291909101015281851461093c575b61093581611890565b90506108d3565b509195945050505050565b5f60608161095484610ca0565b6001600160a01b03160361097a5760405162461bcd60e51b81526004016105ff906119ba565b61098383610ca0565b915061098e83610af8565b9050915091565b5f9182526006602090815260408084206001600160a01b0393909316845291905290205460ff1690565b5f6109c982610816565b151592915050565b6060600180546104e79061184a565b61059a338383610eb0565b5f7f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a6610a1681610da7565b6001600160a01b038316610a765760405162461bcd60e51b815260206004820152602160248201527f5465616d506173734e46543a206d696e7420746f207a65726f206164647265736044820152607360f81b60648201526084016105ff565b60078054905f610a8583611890565b91905055506007549150610a998383610f4e565b60405133815282906001600160a01b038516907fd3a133a9c5ca31b1591486d36217c4a33338a7bba031110e8d7ec0179b3ea11f9060200160405180910390a35b50919050565b610aeb84848461068f565b6107123385858585610f67565b60605f610b0483610ca0565b6001600160a01b031603610b2a5760405162461bcd60e51b81526004016105ff906119ba565b6008610b358361108f565b604051602001610b469291906119fb565b6040516020818303038152906040529050919050565b5f6007546001610b6c9190611a7e565b905090565b610b7a82610718565b610b8381610da7565b6107128383610e45565b5f80516020611ae9833981519152610ba481610da7565b5f610bae83610ca0565b6001600160a01b031603610bd45760405162461bcd60e51b81526004016105ff906119ba565b6040518281527ff8e1a15aba9398e019f0b49df1a4fde98ee17ae345cb5f6b5e2c27f5033e8ce79060200160405180910390a15050565b6001600160a01b039182165f90815260056020908152604080832093909416825291909152205460ff1690565b5f6001600160e01b03198216637965db0b60e01b14806104d357506104d38261111f565b5f80610c6783610ca0565b90506001600160a01b0381166104d357604051637e27328960e01b8152600481018490526024016105ff565b61077d838383600161116e565b5f908152600260205260409020546001600160a01b031690565b5f80610cc584610ca0565b90506001600160a01b03831615610ce157610ce1818486611272565b6001600160a01b03811615610d1b57610cfc5f855f8061116e565b6001600160a01b0381165f90815260036020526040902080545f190190555b6001600160a01b03851615610d49576001600160a01b0385165f908152600360205260409020805460010190555b5f8481526002602052604080822080546001600160a01b0319166001600160a01b0389811691821790925591518793918516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4949350505050565b610db181336112d6565b50565b5f610dbf8383610995565b610e3e575f8381526006602090815260408083206001600160a01b03861684529091529020805460ff19166001179055610df63390565b6001600160a01b0316826001600160a01b0316847f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a45060016104d3565b505f6104d3565b5f610e508383610995565b15610e3e575f8381526006602090815260408083206001600160a01b0386168085529252808320805460ff1916905551339286917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a45060016104d3565b6001600160a01b038216610ee257604051630b61174360e31b81526001600160a01b03831660048201526024016105ff565b6001600160a01b038381165f81815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b61059a828260405180602001604052805f81525061130f565b6001600160a01b0383163b1561108857604051630a85bd0160e11b81526001600160a01b0384169063150b7a0290610fa9908890889087908790600401611a91565b6020604051808303815f875af1925050508015610fe3575060408051601f3d908101601f19168201909252610fe091810190611acd565b60015b61104a573d808015611010576040519150601f19603f3d011682016040523d82523d5f602084013e611015565b606091505b5080515f0361104257604051633250574960e11b81526001600160a01b03851660048201526024016105ff565b805160208201fd5b6001600160e01b03198116630a85bd0160e11b1461108657604051633250574960e11b81526001600160a01b03851660048201526024016105ff565b505b5050505050565b60605f61109b83611326565b60010190505f8167ffffffffffffffff8111156110ba576110ba611739565b6040519080825280601f01601f1916602001820160405280156110e4576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a85049450846110ee57509392505050565b5f6001600160e01b031982166380ac58cd60e01b148061114f57506001600160e01b03198216635b5e139f60e01b145b806104d357506301ffc9a760e01b6001600160e01b03198316146104d3565b808061118257506001600160a01b03821615155b15611243575f61119184610c5c565b90506001600160a01b038316158015906111bd5750826001600160a01b0316816001600160a01b031614155b80156111d057506111ce8184610c0b565b155b156111f95760405163a9fbf51f60e01b81526001600160a01b03841660048201526024016105ff565b81156112415783856001600160a01b0316826001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b50505f90815260046020526040902080546001600160a01b0319166001600160a01b0392909216919091179055565b61127d8383836113fd565b61077d576001600160a01b0383166112ab57604051637e27328960e01b8152600481018290526024016105ff565b60405163177e802f60e01b81526001600160a01b0383166004820152602481018290526044016105ff565b6112e08282610995565b61059a5760405163e2517d3f60e01b81526001600160a01b0382166004820152602481018390526044016105ff565b6113198383611461565b61077d335f858585610f67565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b83106113645772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611390576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc1000083106113ae57662386f26fc10000830492506010015b6305f5e10083106113c6576305f5e100830492506008015b61271083106113da57612710830492506004015b606483106113ec576064830492506002015b600a83106104d35760010192915050565b5f6001600160a01b038316158015906114595750826001600160a01b0316846001600160a01b0316148061143657506114368484610c0b565b8061145957505f828152600460205260409020546001600160a01b038481169116145b949350505050565b6001600160a01b03821661148a57604051633250574960e11b81525f60048201526024016105ff565b5f61149683835f610cba565b90506001600160a01b0381161561077d576040516339e3563760e11b81525f60048201526024016105ff565b6001600160e01b031981168114610db1575f80fd5b5f602082840312156114e7575f80fd5b81356114f2816114c2565b9392505050565b5f5b838110156115135781810151838201526020016114fb565b50505f910152565b5f81518084526115328160208601602086016114f9565b601f01601f19169290920160200192915050565b602081525f6114f2602083018461151b565b5f60208284031215611568575f80fd5b5035919050565b80356001600160a01b0381168114611585575f80fd5b919050565b5f806040838503121561159b575f80fd5b6115a48361156f565b946020939093013593505050565b5f602082840312156115c2575f80fd5b6114f28261156f565b5f805f606084860312156115dd575f80fd5b6115e68461156f565b92506115f46020850161156f565b9150604084013590509250925092565b5f8060408385031215611615575f80fd5b823591506116256020840161156f565b90509250929050565b5f806020838503121561163f575f80fd5b823567ffffffffffffffff80821115611656575f80fd5b818501915085601f830112611669575f80fd5b813581811115611677575f80fd5b866020828501011115611688575f80fd5b60209290920196919550909350505050565b602080825282518282018190525f9190848201906040850190845b818110156116d1578351835292840192918401916001016116b5565b50909695505050505050565b6001600160a01b03831681526040602082018190525f906114599083018461151b565b5f8060408385031215611711575f80fd5b61171a8361156f565b91506020830135801515811461172e575f80fd5b809150509250929050565b634e487b7160e01b5f52604160045260245ffd5b5f805f8060808587031215611760575f80fd5b6117698561156f565b93506117776020860161156f565b925060408501359150606085013567ffffffffffffffff8082111561179a575f80fd5b818701915087601f8301126117ad575f80fd5b8135818111156117bf576117bf611739565b604051601f8201601f19908116603f011681019083821181831017156117e7576117e7611739565b816040528281528a60208487010111156117ff575f80fd5b826020860160208301375f60208483010152809550505050505092959194509250565b5f8060408385031215611833575f80fd5b61183c8361156f565b91506116256020840161156f565b600181811c9082168061185e57607f821691505b602082108103610ada57634e487b7160e01b5f52602260045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b5f600182016118a1576118a161187c565b5060010190565b601f82111561077d57805f5260205f20601f840160051c810160208510156118cd5750805b601f840160051c820191505b81811015611088575f81556001016118d9565b67ffffffffffffffff83111561190457611904611739565b61191883611912835461184a565b836118a8565b5f601f841160018114611949575f85156119325750838201355b5f19600387901b1c1916600186901b178355611088565b5f83815260208120601f198716915b828110156119785786850135825560209485019460019092019101611958565b5086821015611994575f1960f88860031b161c19848701351681555b505060018560011b0183555050505050565b634e487b7160e01b5f52603260045260245ffd5b60208082526021908201527f5465616d506173734e46543a20746f6b656e20646f6573206e6f7420657869736040820152601d60fa1b606082015260800190565b5f808454611a088161184a565b60018281168015611a205760018114611a3557611a61565b60ff1984168752821515830287019450611a61565b885f526020805f205f5b85811015611a585781548a820152908401908201611a3f565b50505082870194505b505050508351611a758183602088016114f9565b01949350505050565b808201808211156104d3576104d361187c565b6001600160a01b03858116825284166020820152604081018390526080606082018190525f90611ac39083018461151b565b9695505050505050565b5f60208284031215611add575f80fd5b81516114f2816114c256fea49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c21775a26469706673582212201ff9e3ce84db7e5685814166407a4c4db26a1997a5998a3e8f9c2dec4fc9be6064736f6c634300081800339f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a6a49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c21775000000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000c000000000000000000000000000000000000000000000000000000000000001000000000000000000000000007fdf03540091f7fcee1a9b6d564c08d03440a8190000000000000000000000000000000000000000000000000000000000000013467574626f6c427261776c5465616d506173730000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044642545000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001e697066733a2f2f6170692e667574626f6c627261776c2e696f2f6970662f0000
Deployed ByteCode
0x608060405234801561000f575f80fd5b50600436106101e7575f3560e01c806375b238fc11610109578063b854a66a1161009e578063d53913931161006e578063d53913931461044f578063d547741f14610476578063d690e16314610489578063e985e9c51461049c575f80fd5b8063b854a66a1461040e578063b88d4fde14610421578063c87b56dd14610434578063caa0f92a14610447575f80fd5b8063937cde20116100d9578063937cde20146103d957806395d89b41146103ec578063a217fddf146103f4578063a22cb465146103fb575f80fd5b806375b238fc146103715780638462151c146103855780638c7a63ae146103a557806391d14854146103c6575f80fd5b80632f2ff15d1161017f5780636352211e1161014f5780636352211e1461030357806370a08231146103165780637106139814610329578063714c539814610369575f80fd5b80632f2ff15d146102b757806336568abe146102ca57806342842e0e146102dd57806355f804b3146102f0575f80fd5b80631428b294116101ba5780631428b2941461026857806318160ddd1461028957806323b872dd14610291578063248a9ca3146102a4575f80fd5b806301ffc9a7146101eb57806306fdde0314610213578063081812fc14610228578063095ea7b314610253575b5f80fd5b6101fe6101f93660046114d7565b6104af565b60405190151581526020015b60405180910390f35b61021b6104d9565b60405161020a9190611546565b61023b610236366004611558565b610568565b6040516001600160a01b03909116815260200161020a565b61026661026136600461158a565b61058f565b005b61027b6102763660046115b2565b61059e565b60405190815260200161020a565b60075461027b565b61026661029f3660046115cb565b61068f565b61027b6102b2366004611558565b610718565b6102666102c5366004611604565b61072e565b6102666102d8366004611604565b61074a565b6102666102eb3660046115cb565b610782565b6102666102fe36600461162e565b61079c565b61023b610311366004611558565b61080c565b61027b6103243660046115b2565b610816565b604080515f80516020611ae983398151915281527f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a660208201520161020a565b61021b61085b565b61027b5f80516020611ae983398151915281565b6103986103933660046115b2565b61086a565b60405161020a919061169a565b6103b86103b3366004611558565b610947565b60405161020a9291906116dd565b6101fe6103d4366004611604565b610995565b6101fe6103e73660046115b2565b6109bf565b61021b6109d1565b61027b5f81565b610266610409366004611700565b6109e0565b61027b61041c3660046115b2565b6109eb565b61026661042f36600461174d565b610ae0565b61021b610442366004611558565b610af8565b61027b610b5c565b61027b7f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a681565b610266610484366004611604565b610b71565b610266610497366004611558565b610b8d565b6101fe6104aa366004611822565b610c0b565b5f632483248360e11b6001600160e01b0319831614806104d357506104d382610c38565b92915050565b60605f80546104e79061184a565b80601f01602080910402602001604051908101604052809291908181526020018280546105139061184a565b801561055e5780601f106105355761010080835404028352916020019161055e565b820191905f5260205f20905b81548152906001019060200180831161054157829003601f168201915b5050505050905090565b5f61057282610c5c565b505f828152600460205260409020546001600160a01b03166104d3565b61059a828233610c93565b5050565b5f6105a882610816565b6001146106085760405162461bcd60e51b8152602060048201526024808201527f5465616d506173734e46543a207a65726f206f72206d756c7469706c6520746f6044820152636b656e7360e01b60648201526084015b60405180910390fd5b60075460015b81811161064d57836001600160a01b031661062882610ca0565b6001600160a01b03160361063d579392505050565b61064681611890565b905061060e565b5060405162461bcd60e51b81526020600482015260166024820152751519585b54185cdcd391950e881b9bdd08199bdd5b9960521b60448201526064016105ff565b6001600160a01b0382166106b857604051633250574960e11b81525f60048201526024016105ff565b5f6106c4838333610cba565b9050836001600160a01b0316816001600160a01b031614610712576040516364283d7b60e01b81526001600160a01b03808616600483015260248201849052821660448201526064016105ff565b50505050565b5f818152600660205260408120600101546104d3565b61073782610718565b61074081610da7565b6107128383610db4565b6001600160a01b03811633146107735760405163334bd91960e11b815260040160405180910390fd5b61077d8282610e45565b505050565b61077d83838360405180602001604052805f815250610ae0565b5f80516020611ae98339815191526107b381610da7565b60086107c08385836118ec565b506007541561077d57600754604080516001815260208101929092527f6bd5c950a8d8df17f772f5af37cb3655737899cbf903264b9795592da439661c910160405180910390a1505050565b5f6104d382610c5c565b5f6001600160a01b038216610840576040516322718ad960e21b81525f60048201526024016105ff565b506001600160a01b03165f9081526003602052604090205490565b6060600880546104e79061184a565b60605f61087683610816565b90505f8167ffffffffffffffff81111561089257610892611739565b6040519080825280602002602001820160405280156108bb578160200160208202803683370190505b509050815f036108cc579392505050565b6007545f60015b82811161093c57866001600160a01b03166108ed82610ca0565b6001600160a01b03160361092c5780848361090781611890565b945081518110610919576109196119a6565b602090810291909101015281851461093c575b61093581611890565b90506108d3565b509195945050505050565b5f60608161095484610ca0565b6001600160a01b03160361097a5760405162461bcd60e51b81526004016105ff906119ba565b61098383610ca0565b915061098e83610af8565b9050915091565b5f9182526006602090815260408084206001600160a01b0393909316845291905290205460ff1690565b5f6109c982610816565b151592915050565b6060600180546104e79061184a565b61059a338383610eb0565b5f7f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a6610a1681610da7565b6001600160a01b038316610a765760405162461bcd60e51b815260206004820152602160248201527f5465616d506173734e46543a206d696e7420746f207a65726f206164647265736044820152607360f81b60648201526084016105ff565b60078054905f610a8583611890565b91905055506007549150610a998383610f4e565b60405133815282906001600160a01b038516907fd3a133a9c5ca31b1591486d36217c4a33338a7bba031110e8d7ec0179b3ea11f9060200160405180910390a35b50919050565b610aeb84848461068f565b6107123385858585610f67565b60605f610b0483610ca0565b6001600160a01b031603610b2a5760405162461bcd60e51b81526004016105ff906119ba565b6008610b358361108f565b604051602001610b469291906119fb565b6040516020818303038152906040529050919050565b5f6007546001610b6c9190611a7e565b905090565b610b7a82610718565b610b8381610da7565b6107128383610e45565b5f80516020611ae9833981519152610ba481610da7565b5f610bae83610ca0565b6001600160a01b031603610bd45760405162461bcd60e51b81526004016105ff906119ba565b6040518281527ff8e1a15aba9398e019f0b49df1a4fde98ee17ae345cb5f6b5e2c27f5033e8ce79060200160405180910390a15050565b6001600160a01b039182165f90815260056020908152604080832093909416825291909152205460ff1690565b5f6001600160e01b03198216637965db0b60e01b14806104d357506104d38261111f565b5f80610c6783610ca0565b90506001600160a01b0381166104d357604051637e27328960e01b8152600481018490526024016105ff565b61077d838383600161116e565b5f908152600260205260409020546001600160a01b031690565b5f80610cc584610ca0565b90506001600160a01b03831615610ce157610ce1818486611272565b6001600160a01b03811615610d1b57610cfc5f855f8061116e565b6001600160a01b0381165f90815260036020526040902080545f190190555b6001600160a01b03851615610d49576001600160a01b0385165f908152600360205260409020805460010190555b5f8481526002602052604080822080546001600160a01b0319166001600160a01b0389811691821790925591518793918516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4949350505050565b610db181336112d6565b50565b5f610dbf8383610995565b610e3e575f8381526006602090815260408083206001600160a01b03861684529091529020805460ff19166001179055610df63390565b6001600160a01b0316826001600160a01b0316847f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a45060016104d3565b505f6104d3565b5f610e508383610995565b15610e3e575f8381526006602090815260408083206001600160a01b0386168085529252808320805460ff1916905551339286917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a45060016104d3565b6001600160a01b038216610ee257604051630b61174360e31b81526001600160a01b03831660048201526024016105ff565b6001600160a01b038381165f81815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b61059a828260405180602001604052805f81525061130f565b6001600160a01b0383163b1561108857604051630a85bd0160e11b81526001600160a01b0384169063150b7a0290610fa9908890889087908790600401611a91565b6020604051808303815f875af1925050508015610fe3575060408051601f3d908101601f19168201909252610fe091810190611acd565b60015b61104a573d808015611010576040519150601f19603f3d011682016040523d82523d5f602084013e611015565b606091505b5080515f0361104257604051633250574960e11b81526001600160a01b03851660048201526024016105ff565b805160208201fd5b6001600160e01b03198116630a85bd0160e11b1461108657604051633250574960e11b81526001600160a01b03851660048201526024016105ff565b505b5050505050565b60605f61109b83611326565b60010190505f8167ffffffffffffffff8111156110ba576110ba611739565b6040519080825280601f01601f1916602001820160405280156110e4576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a85049450846110ee57509392505050565b5f6001600160e01b031982166380ac58cd60e01b148061114f57506001600160e01b03198216635b5e139f60e01b145b806104d357506301ffc9a760e01b6001600160e01b03198316146104d3565b808061118257506001600160a01b03821615155b15611243575f61119184610c5c565b90506001600160a01b038316158015906111bd5750826001600160a01b0316816001600160a01b031614155b80156111d057506111ce8184610c0b565b155b156111f95760405163a9fbf51f60e01b81526001600160a01b03841660048201526024016105ff565b81156112415783856001600160a01b0316826001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b50505f90815260046020526040902080546001600160a01b0319166001600160a01b0392909216919091179055565b61127d8383836113fd565b61077d576001600160a01b0383166112ab57604051637e27328960e01b8152600481018290526024016105ff565b60405163177e802f60e01b81526001600160a01b0383166004820152602481018290526044016105ff565b6112e08282610995565b61059a5760405163e2517d3f60e01b81526001600160a01b0382166004820152602481018390526044016105ff565b6113198383611461565b61077d335f858585610f67565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b83106113645772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611390576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc1000083106113ae57662386f26fc10000830492506010015b6305f5e10083106113c6576305f5e100830492506008015b61271083106113da57612710830492506004015b606483106113ec576064830492506002015b600a83106104d35760010192915050565b5f6001600160a01b038316158015906114595750826001600160a01b0316846001600160a01b0316148061143657506114368484610c0b565b8061145957505f828152600460205260409020546001600160a01b038481169116145b949350505050565b6001600160a01b03821661148a57604051633250574960e11b81525f60048201526024016105ff565b5f61149683835f610cba565b90506001600160a01b0381161561077d576040516339e3563760e11b81525f60048201526024016105ff565b6001600160e01b031981168114610db1575f80fd5b5f602082840312156114e7575f80fd5b81356114f2816114c2565b9392505050565b5f5b838110156115135781810151838201526020016114fb565b50505f910152565b5f81518084526115328160208601602086016114f9565b601f01601f19169290920160200192915050565b602081525f6114f2602083018461151b565b5f60208284031215611568575f80fd5b5035919050565b80356001600160a01b0381168114611585575f80fd5b919050565b5f806040838503121561159b575f80fd5b6115a48361156f565b946020939093013593505050565b5f602082840312156115c2575f80fd5b6114f28261156f565b5f805f606084860312156115dd575f80fd5b6115e68461156f565b92506115f46020850161156f565b9150604084013590509250925092565b5f8060408385031215611615575f80fd5b823591506116256020840161156f565b90509250929050565b5f806020838503121561163f575f80fd5b823567ffffffffffffffff80821115611656575f80fd5b818501915085601f830112611669575f80fd5b813581811115611677575f80fd5b866020828501011115611688575f80fd5b60209290920196919550909350505050565b602080825282518282018190525f9190848201906040850190845b818110156116d1578351835292840192918401916001016116b5565b50909695505050505050565b6001600160a01b03831681526040602082018190525f906114599083018461151b565b5f8060408385031215611711575f80fd5b61171a8361156f565b91506020830135801515811461172e575f80fd5b809150509250929050565b634e487b7160e01b5f52604160045260245ffd5b5f805f8060808587031215611760575f80fd5b6117698561156f565b93506117776020860161156f565b925060408501359150606085013567ffffffffffffffff8082111561179a575f80fd5b818701915087601f8301126117ad575f80fd5b8135818111156117bf576117bf611739565b604051601f8201601f19908116603f011681019083821181831017156117e7576117e7611739565b816040528281528a60208487010111156117ff575f80fd5b826020860160208301375f60208483010152809550505050505092959194509250565b5f8060408385031215611833575f80fd5b61183c8361156f565b91506116256020840161156f565b600181811c9082168061185e57607f821691505b602082108103610ada57634e487b7160e01b5f52602260045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b5f600182016118a1576118a161187c565b5060010190565b601f82111561077d57805f5260205f20601f840160051c810160208510156118cd5750805b601f840160051c820191505b81811015611088575f81556001016118d9565b67ffffffffffffffff83111561190457611904611739565b61191883611912835461184a565b836118a8565b5f601f841160018114611949575f85156119325750838201355b5f19600387901b1c1916600186901b178355611088565b5f83815260208120601f198716915b828110156119785786850135825560209485019460019092019101611958565b5086821015611994575f1960f88860031b161c19848701351681555b505060018560011b0183555050505050565b634e487b7160e01b5f52603260045260245ffd5b60208082526021908201527f5465616d506173734e46543a20746f6b656e20646f6573206e6f7420657869736040820152601d60fa1b606082015260800190565b5f808454611a088161184a565b60018281168015611a205760018114611a3557611a61565b60ff1984168752821515830287019450611a61565b885f526020805f205f5b85811015611a585781548a820152908401908201611a3f565b50505082870194505b505050508351611a758183602088016114f9565b01949350505050565b808201808211156104d3576104d361187c565b6001600160a01b03858116825284166020820152604081018390526080606082018190525f90611ac39083018461151b565b9695505050505050565b5f60208284031215611add575f80fd5b81516114f2816114c256fea49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c21775a26469706673582212201ff9e3ce84db7e5685814166407a4c4db26a1997a5998a3e8f9c2dec4fc9be6064736f6c63430008180033